百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术教程 > 正文

放弃机器学习,Python 如何进行物体检测?

suiw9 2025-02-18 13:22 17 浏览 0 评论

学习在不使用机器学习或任何框架的情况下,如何在Python中进行物体检测。

作者 | Ravindu Senaratne

译者 | 弯月,责编 | 屠敏

头图 | CSDN 下载自视觉中国

出品 | CSDN(ID:CSDNnews)

以下为译文:

每当我们听说“物体检测”时,就会想到机器学习和各种不同的框架。但实际上,我们可以在不使用机器学习或任何其他框架的情况下进行物体检测。在本文中,我将向你展示如何仅使用Python进行操作。

首先,我们定义一个模板图像(或者叫模板物体),然后程序将在源图像中查找与我们选择的模板匹配的所有其他物体。举例来说明一下。下面有两张图片,上面是飞机的源图像,下面是模板照片,其中的物体为飞机。

下面我们来编写python代码,圈出源图像中所有匹配模板图像的区域。

首先,我们来检测一个物体。然后再调整代码实现多个物体的检测。

检测一个物体:最准确的那个物体

我们需要一个源图像和一个模板图像。模板图像在源图像上滑动(像2D卷积有一样),然后程序将尝试找到最准确的匹配项。

下面我们开始写代码。

import cv2
import numpy as np
from matplotlib import pyplot as plt
img_rgb = cv2.imread('SourceIMG.jpeg')
img_gray = cv2.cvtColor(img_rgb, cv2.COLOR_BGR2GRAY)
template = cv2.imread('TemplateIMG.jpeg', 0)

在上述代码中,我们使用OpenCV读取SourceIMG.jpeg和TemplateIMG.jpeg。

height, width = template.shape[::]

模板图像会在整个源图像上滑动,对整个区域进行搜索(将左上角作为参考框)。模板图像与源图像匹配后,我们记下左上角的位置,然后在实际匹配的区域周围绘制一个框。为此,我们需要知道此模板图像的高度和宽度。下面我们来绘制矩形。

res = cv2.matchTemplate(img_gray, template, cv2.TM_SQDIFF)

模板匹配是OpenCV提供的功能,它利用源图像和模板图像的灰度图像,计算我们需要的统计指标。这里我使用的是最小平方差(TM_SQDIFF),因为我们寻找的是模板图像和源图像之间的最小差。

plt.imshow(res, cmap='gray')

如果将到目前为止的结果绘制成图,就会得到一个概率图。从下图可以看到,这些小点是模板实际匹配的位置。

min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)

我们可以使用上面的代码从概率图中找出小点的位置。然后使用minMaxLoc(res)提取最小值、最大值、最小值的位置和最大值的位置。

top_left = min_loc 
bottom_right = (top_left[0] + width, top_left[1] + height)
cv2.rectangle(img_rgb, top_left, bottom_right, (255, 0, 0), 2)

为了在模板图像匹配的源图像上绘制一个蓝色矩形,我们需要获得最小值的位置min_loc(该位置为匹配开始的位置)作为左上角。同样,我们可以通过top_left[0] + width和top_left [1] + height获得右下角。通过这些尺寸,我们可以使用cv2.rectangle绘制蓝色矩形。

一切准备就绪,下面我们进行可视化。

cv2.imshow("Matched image", img_rgb)
cv2.waitKey
cv2.destroyAllWindows

完整的代码:

import cv2
import numpy as np
from matplotlib import pyplot as plt

img_rgb = cv2.imread('SourceIMG.jpeg')
img_gray = cv2.cvtColor(img_rgb, cv2.COLOR_BGR2GRAY)
template = cv2.imread('TemplateIMG.jpeg', 0)

height, width = template.shape[::]

res = cv2.matchTemplate(img_gray, template, cv2.TM_SQDIFF)
plt.imshow(res, cmap='gray')

min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)

top_left = min_loc #Change to max_loc for all except for TM_SQDIFF
bottom_right = (top_left[0] + width, top_left[1] + height)
cv2.rectangle(img_rgb, top_left, bottom_right, (255, 0, 0), 2)

cv2.imshow("Matched image", img_rgb)
cv2.waitKey
cv2.destroyAllWindows

检测多个物体:在给定阈值下进行检测

上述我们已经完成了单个物体的检测,即选择源图像和模板图像之差的最小值。通过定义阈值的方法,我们可以检测所有与模板图像相似的物体。

为此,我将使用与上例相同的源图像和模板图像,并设置阈值为概率大于0.5(你可以查看res数组来确定阈值)。我们只需要更改几行代码即可检测多个物体。

res = cv2.matchTemplate(img_gray, template, cv2.TM_CCOEFF_NORMED)

在这里,我使用TM_CCOEFF_NORMED,因为我们需要获取最大值,而不是最小值。这意味着我们需要寻找多个物体而不是一个。

threshold = 0.5 #For TM_CCOEFF_NORMED, larger values means good fit
loc = np.where( res >= threshold)

我们要查找所有大于阈值的位置值。loc接收2个输出数组,并将这些数组组合在一起,这样就可以获得x,y坐标。

for pt in zip(*loc[::-1]):
cv2.rectangle(img_rgb, pt, (pt[0] + width, pt[1] + height), (255, 0, 0), 1)

这里有多个位置。因此,我们需要针对所有位置绘制蓝色矩形。下面我们来进行可视化。

完整的代码:

import cv2
import numpy as np
from matplotlib import pyplot as plt

img_rgb = cv2.imread('SourceIMG.jpeg')
img_gray = cv2.cvtColor(img_rgb, cv2.COLOR_BGR2GRAY)
template = cv2.imread('TemplateIMG.jpeg', 0)

height, width = template.shape[::]

res = cv2.matchTemplate(img_gray, template, cv2.TM_CCOEFF_NORMED)
plt.imshow(res, cmap='gray')

threshold = 0.5 #For TM_CCOEFF_NORMED, larger values = good fit.

loc = np.where( res >= threshold)

for pt in zip(loc[::-1]):
cv2.rectangle(img_rgb, pt, (pt[0] + width, pt[1] + height), (255, 0, 0), 1)

cv2.imshow("Matched image", img_rgb)
cv2.waitKey
cv2.destroyAllWindows

看起来很简单吧?但是如果我们使用机器学习或框架,则可以达到更高的准确性。

感谢您的阅读,希望本文对您有所帮助。

原文:
https://towardsdatascience.com/object-detection-on-python-using-template-matching-ab4243a0ca62

本文为 CSDN 翻译,转载请注明来源出处。

相关推荐

俄罗斯的 HTTPS 也要被废了?(俄罗斯网站关闭)

发布该推文的ScottHelme是一名黑客,SecurityHeaders和ReportUri的创始人、Pluralsight作者、BBC常驻黑客。他表示,CAs现在似乎正在停止为俄罗斯域名颁发...

如何强制所有流量使用 HTTPS一网上用户

如何强制所有流量使用HTTPS一网上用户使用.htaccess强制流量到https的最常见方法可能是使用.htaccess重定向请求。.htaccess是一个简单的文本文件,简称为“.h...

https和http的区别(https和http有何区别)

“HTTPS和HTTP都是数据传输的应用层协议,区别在于HTTPS比HTTP安全”。区别在哪里,我们接着往下看:...

快码住!带你十分钟搞懂HTTP与HTTPS协议及请求的区别

什么是协议?网络协议是计算机之间为了实现网络通信从而达成的一种“约定”或“规则”,正是因为这个“规则”的存在,不同厂商的生产设备、及不同操作系统组成的计算机之间,才可以实现通信。简单来说,计算机与网络...

简述HTTPS工作原理(简述https原理,以及与http的区别)

https是在http协议的基础上加了一层SSL(由网景公司开发),加密由ssl实现,它的目的是为用户提供对网站服务器的身份认证(需要CA),以至于保护交换数据的隐私和完整性,原理如图示。1、客户端发...

21、HTTPS 有几次握手和挥手?HTTPS 的原理什么是(高薪 常问)

HTTPS是3次握手和4次挥手,和HTTP是一样的。HTTPS的原理...

一次安全可靠的通信——HTTPS原理

为什么HTTPS协议就比HTTP安全呢?一次安全可靠的通信应该包含什么东西呢,这篇文章我会尝试讲清楚这些细节。Alice与Bob的通信...

为什么有的网站没有使用https(为什么有的网站点不开)

有的网站没有使用HTTPS的原因可能涉及多个方面,以下是.com、.top域名的一些见解:服务器性能限制:HTTPS使用公钥加密和私钥解密技术,这要求服务器具备足够的计算能力来处理加解密操作。如果服务...

HTTPS是什么?加密原理和证书。SSL/TLS握手过程

秘钥的产生过程非对称加密...

图解HTTPS「转」(图解http 完整版 彩色版 pdf)

我们都知道HTTPS能够加密信息,以免敏感信息被第三方获取。所以很多银行网站或电子邮箱等等安全级别较高的服务都会采用HTTPS协议。...

HTTP 和 HTTPS 有何不同?一文带你全面了解

随着互联网时代的高速发展,Web服务器和客户端之间的安全通信需求也越来越高。HTTP和HTTPS是两种广泛使用的Web通信协议。本文将介绍HTTP和HTTPS的区别,并探讨为什么HTTPS已成为We...

HTTP与HTTPS的区别,详细介绍(http与https有什么区别)

HTTP与HTTPS介绍超文本传输协议HTTP协议被用于在Web浏览器和网站服务器之间传递信息,HTTP协议以明文方式发送内容,不提供任何方式的数据加密,如果攻击者截取了Web浏览器和网站服务器之间的...

一文让你轻松掌握 HTTPS(https详解)

一文让你轻松掌握HTTPS原文作者:UC国际研发泽原写在最前:欢迎你来到“UC国际技术”公众号,我们将为大家提供与客户端、服务端、算法、测试、数据、前端等相关的高质量技术文章,不限于原创与翻译。...

如何在Spring Boot应用程序上启用HTTPS?

HTTPS是HTTP的安全版本,旨在提供传输层安全性(TLS)[安全套接字层(SSL)的后继产品],这是地址栏中的挂锁图标,用于在Web服务器和浏览器之间建立加密连接。HTTPS加密每个数据包以安全方...

一文彻底搞明白Http以及Https(http0)

早期以信息发布为主的Web1.0时代,HTTP已可以满足绝大部分需要。证书费用、服务器的计算资源都比较昂贵,作为HTTP安全扩展的HTTPS,通常只应用在登录、交易等少数环境中。但随着越来越多的重要...

取消回复欢迎 发表评论: