解析Hadoop的集群管理与安全机制(hadoop集群包含什么节点)
suiw9 2025-03-23 23:35 17 浏览 0 评论
HDFS数据管理
1、设置元数据与数据的存储路径,通过
dfs.name.dir,dfs.data.dir,fs.checkpoint.dir(hadoop1.x)、
hadoop.tmp.dir,dfs.namenode.name.dir,dfs.namenode.edits.dir,dfs.datanode.data.dir(hadoop2.x)等属性来设置;
2、经常执行HDFS文件系统检查工具FSCK,eg:hdfs fsck /liguodong -files -blocks;
[root@slave1 mapreduce]# hdfs fsck /input Connecting to namenode via http://slave1:50070 FSCK started by root (auth:SIMPLE) from /172.23.253.22 for path /input at Tue Jun 16 21:29:21 CST 2015 .Status: HEALTHY Total size: 80 B Total dirs: 0 Total files: 1 Total symlinks: 0 Total blocks (validated): 1 (avg. block size 80 B) Minimally replicated blocks: 1 (100.0 %) Over-replicated blocks: 0 (0.0 %) Under-replicated blocks: 0 (0.0 %) Mis-replicated blocks: 0 (0.0 %) Default replication factor: 1 Average block replication: 1.0 Corrupt blocks: 0 Missing replicas: 0 (0.0 %) Number of data-nodes: 1 Number of racks: 1 FSCK ended at Tue Jun 16 21:29:21 CST 2015 in 1 milliseconds The filesystem under path '/input' is HEALTHY
3、一旦数据发生异常,可以设置NameNode为安全模式,这时NameNode为只读模式;
操作命令:hdfs dfsadmin -safemode enter | leave | get | wait
[root@slave1 mapreduce]# hdfs dfsadmin -report Configured Capacity: 52844687360 (49.22 GB) Present Capacity: 45767090176 (42.62 GB) DFS Remaining: 45766246400 (42.62 GB) DFS Used: 843776 (824 KB) DFS Used%: 0.00% Under replicated blocks: 0 Blocks with corrupt replicas: 0 Missing blocks: 0 ------------------------------------------------- Datanodes available: 1 (1 total, 0 dead) Live datanodes: Name: 172.23.253.22:50010 (slave1) Hostname: slave1 Decommission Status : Normal Configured Capacity: 52844687360 (49.22 GB) DFS Used: 843776 (824 KB) Non DFS Used: 7077597184 (6.59 GB) DFS Remaining: 45766246400 (42.62 GB) DFS Used%: 0.00% DFS Remaining%: 86.61% Last contact: Tue Jun 16 21:27:17 CST 2015 [root@slave1 mapreduce]# hdfs dfsadmin -safemode get Safe mode is OFF
4、每一个DataNode都会运行一个数据扫描线程,它可以检测并通过修复命令来修复坏块或丢失的数据块,通过属性设置扫描周期;
dfs.datanode.scan.period.hourses, 默认是504小时。
MapReduce作业管理
查看Job信息:mapred job -list;
杀死Job:mapred job -kill;
查看指定路径下的历史日志汇总:mapred job -history output-dir;
打印map和reduce完成的百分比和所有计数器:mapred job -status job_id;
[root@slave1 mapreduce]# mapred job Usage: CLI
Hadoop集群安全
Hadoop自带两种安全机制:Simple机制、Kerberos机制
1、Simple机制:
Simple机制是JAAS协议与delegation token结合的一种机制,JAAS(Java Authentication and Authorization Service)java认证与授权服务;
(1)用户提交作业时,JobTracker端要进行身份核实,先是验证到底是不是这个人,即通过检查执行当前代码的人与JobConf中的user.name中的用户是否一致;
(2)然后检查ACL(Access Control List)配置文件(由管理员配置)看你是否有提交作业的权限。一旦你通过验证,会获取HDFS或者mapreduce授予的delegation token(访问不同模块有不同的delegation token),之后的任何操作,比如访问文件,均要检查该token是否存在,且使用者跟之前注册使用该token的人是否一致。
2、Kerberos机制:
Kerberos机制是基于认证服务器的一种方式;
Princal(安全个体):被认证的个体,有一个名字和口令;
KDC(key distribution center):是一个网络服务,提供ticket和临时会话密钥;
Ticket:一个记录,客户用它来向服务器证明自己的身份,包括客户标识、会话密钥、时间戳;
AS(Authentication Server):认证服务器;
TSG(Ticket Granting Server):许可认证服务器;
(1)Client将之前获得TGT和要请求的服务信息(服务名等)发送给KDC,
KDC中的Ticket Granting Service将为Client和Service之间生成一个Session Key用于Service对Client的身份鉴别。
然后KDC将这个Session Key和用户名,用户地址(IP),服务名,有效期, 时间戳一起包装成一个Ticket(这些信息最终用于Service对Client的身份鉴别)发送给Service,
不过Kerberos协议并没有直接将Ticket发送给Service,而是通过Client转发给Service,所以有了第二步。
(2)此时KDC将刚才的Ticket转发给Client。
由于这个Ticket是要给Service的,不能让Client看到,所以KDC用协议开始前KDC与Service之间的密钥将Ticket加密后再发送给Client。
同时为了让Client和Service之间共享那个密钥(KDC在第一步为它们创建的Session Key),
KDC用Client与它之间的密钥将Session Key加密随加密的Ticket一起返回给Client。
(3)为了完成Ticket的传递,Client将刚才收到的Ticket转发到Service。
由于Client不知道KDC与Service之间的密钥,所以它无法算改Ticket中的信息。
同时Client将收到的Session Key解密出来,然后将自己的用户名,用户地址(IP)打包成Authenticator用Session Key加密也发送给Service。
(4)Service 收到Ticket后利用它与KDC之间的密钥将Ticket中的信息解密出来,从而获得Session Key和用户名,用户地址(IP),服务名,有效期。
然后再用Session Key将Authenticator解密从而获得用户名,用户地址(IP)将其与之前Ticket中解密出来的用户名,用户地址(IP)做比较从而验证Client的身份。
(5)如果Service有返回结果,将其返回给Client。
Hadoop集群内部使用Kerberos进行认证
好处:
可靠:Hadoop本身并没有认证功能和创建用户组功能,使用依靠外围的认证系统;
高效:Kerberos使用对称钥匙操作,比SSL的公共密钥快;
操作简单:用户可以方便进行操作,不需要很复杂的指令。比如废除一个用户只需要从Kerbores的KDC数据库中删除即可。
HDFS安全
1、Client获取namenode初始访问认证(使用kerberos)后,会获取一个delegation token,这个token可以作为接下来访问HDFS或提交作业的凭证;
2、同样为了读取某个文件,Client首先要与namenode交互,获取对应block的block access token,
然后到相应的datanode上读取各个block ,
而datanode在初始启动向namenode注册时候,已经提前获取了这些token,
当client要从TaskTracker上读取block时,首先验证token,通过才允许读取。
MapReduce安全
1、所有关于作业的提交或者作业运行状态的追踪均是采用带有Kerberos认证的RPC实现的。
授权用户提交作业时,JobTracker会为之生成一个delegation token,该token将被作为job的一部分存储到HDFS上并通过RPC分发给各个TaskTracker,一旦job运行结束,该token失效。
2、用户提交作业的每个task均是以用户身份启动的,这样一个用户的task便不可以向TaskTracker或者其他用户的task发送操作系统信号,给其他用户造成干扰。这要求为每个用户在所有的TaskTracker上建一个账号;
3、当一个map task运行结束时,它要将计算结果告诉管理它的TaskTracker,之后每个reduce task会通过HTTP向该TaskTracker请求自己要处理的那块数据,Hadoop应该确保其他用户不可以获取map task的中间结果,
其执行过程是:reduce task对“请求URL”和“当前时间”计算HMAC-SHA1值,并将该值作为请求的一部分发动给TaskTracker,TaskTracker收到后会验证该值的正确性。
博文出处:
http://blog.csdn.net/scgaliguodong123_/article/details/46523569
相关推荐
- 看完这一篇数据仓库干货,终于搞懂什么是hive了
-
一、Hive定义Hive最早来源于FaceBook,因为FaceBook网站每天产生海量的结构化日志数据,为了对这些数据进行管理,并且因为机器学习的需求,产生了Hive这们技术,并继续发展成为一个成...
- 真正让你明白Hive参数调优系列1:控制map个数与性能调优参数
-
本系列几章系统地介绍了开发中Hive常见的用户配置属性(有时称为参数,变量或选项),并说明了哪些版本引入了哪些属性,常见有哪些属性的使用,哪些属性可以进行Hive调优,以及如何使用的问题。以及日常Hi...
- HIVE SQL基础语法(hive sql是什么)
-
引言与关系型数据库的SQL略有不同,但支持了绝大多数的语句如DDL、DML以及常见的聚合函数、连接查询、条件查询。HIVE不适合用于联机事务处理,也不提供实时查询功能。它最适合应用在基于大量不可变数据...
- [干货]Hive与Spark sql整合并测试效率
-
在目前的大数据架构中hive是用来做离线数据分析的,而在Spark1.4版本中spark加入了sparksql,我们知道spark的优势是速度快,那么到底sparksql会比hive...
- Hive 常用的函数(hive 数学函数)
-
一、Hive函数概述及分类标准概述Hive内建了不少函数,用于满足用户不同使用需求,提高SQL编写效率:...
- 数仓/数开面试题真题总结(二)(数仓面试时应该讲些什么)
-
二.Hive...
- Tomcat处理HTTP请求流程解析(tomcat 处理请求过程)
-
1、一个简单的HTTP服务器在Web应用中,浏览器请求一个URL,服务器就把生成的HTML网页发送给浏览器,而浏览器和服务器之间的传输协议是HTTP,那么接下来我们看下如何用Java来实现一个简单...
- Python 高级编程之网络编程 Socket(六)
-
一、概述Python网络编程是指使用Python语言编写的网络应用程序。这种编程涉及到网络通信、套接字编程、协议解析等多种方面的知识。...
- [904]ScalersTalk成长会Python小组第20周学习笔记
-
Scalers点评:在2015年,ScalersTalk成长会Python小组完成了《Python核心编程》第1轮的学习。到2016年,我们开始第二轮的学习,并且将重点放在章节的习题上。Python小...
- 「web开发」几款http请求测试工具
-
curl命令CURL(CommandLineUniformResourceLocator),是一个利用URL语法,在命令行终端下使用的网络请求工具,支持HTTP、HTTPS、FTP等协议...
- Mac 基于HTTP方式访问下载共享文件,配置共享服务器
-
方法一:使用Python的SimpleHTTPServer进行局域网文件共享Mac自带Python,所以不需要安装其他软件,一条命令即可...
- 使用curl进行http高并发访问(php curl 大量并发获得结果)
-
本文主要介绍curl异步接口的使用方式,以及获取高性能的一些思路和实践。同时假设读者已经熟悉并且使用过同步接口。1.curl接口基本介绍curl一共有三种接口:EasyInterface...
- Django 中的 HttpResponse理解和用法-基础篇1
-
思路是方向,代码是时间,知识需积累,经验需摸索。希望对大家有用,有错误还望指出。...
你 发表评论:
欢迎- 一周热门
-
-
Linux:Ubuntu22.04上安装python3.11,简单易上手
-
宝马阿布达比分公司推出独特M4升级套件,整套升级约在20万
-
MATLAB中图片保存的五种方法(一)(matlab中保存图片命令)
-
别再傻傻搞不清楚Workstation Player和Workstation Pro的区别了
-
如何提取、修改、强刷A卡bios a卡刷bios工具
-
Linux上使用tinyproxy快速搭建HTTP/HTTPS代理器
-
Element Plus 的 Dialog 组件实现点击遮罩层不关闭对话框
-
日本组合“岚”将于2020年12月31日停止团体活动
-
SpringCloud OpenFeign 使用 okhttp 发送 HTTP 请求与 HTTP/2 探索
-
MacOS + AList + 访达,让各种云盘挂载到本地(建议收藏)
-
- 最近发表
- 标签列表
-
- dialog.js (57)
- importnew (44)
- windows93网页版 (44)
- yii2框架的优缺点 (45)
- tinyeditor (45)
- qt5.5 (60)
- windowsserver2016镜像下载 (52)
- okhttputils (51)
- android-gif-drawable (53)
- 时间轴插件 (56)
- docker systemd (65)
- slider.js (47)
- android webview缓存 (46)
- pagination.js (59)
- loadjs (62)
- openssl1.0.2 (48)
- velocity模板引擎 (48)
- pcre library (47)
- zabbix微信报警脚本 (63)
- jnetpcap (49)
- pdfrenderer (43)
- fastutil (48)
- uinavigationcontroller (53)
- bitbucket.org (44)
- python websocket-client (47)